Representation Theorem for Finite Distributive Lattices
نویسنده
چکیده
1. INDUCTION IN A FINITE LATTICE Let L be a 1-sorted structure and let A, B be subsets of L. Let us observe that A⊆ B if and only if: (Def. 1) For every element x of L such that x ∈ A holds x ∈ B. Let L be a lattice. Observe that there exists a chain of L which is non empty. Let L be a lattice and let x, y be elements of L. Let us assume that x ≤ y. A non empty chain of L is called a x-chain of y if: (Def. 2) x ∈ it and y ∈ it and for every element z of L such that z ∈ it holds x≤ z and z≤ y. We now state the proposition (1) For every lattice L and for all elements x, y of L such that x≤ y holds {x,y} is a x-chain of y.
منابع مشابه
FUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES
The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...
متن کاملRepresentation theorem for finite intuitionistic fuzzy perfect distributive lattices
In this paper, we extend some results obtained by A. Amroune and B. Davvaz in [1]. More precisely, we will develop a representation theory of intuitionistic fuzzy perfect distributive lattices in the finite case. To that end, we introduce the notion of intuitionistic fuzzy perfect distributive lattices and the one of fuzzy perfect Priestley spaces. In this way, the results of A. Amroune and B. ...
متن کاملExponents of Finite Simple Lattices
In the late 1930's Garrett Birkhoff [3] pioneered the theory of distributive lattices. An important component in this theory is the concept of exponentiation of lattices [4]: for a lattice L and a partially ordered set P let L denote the set of all order-preserving maps of P to L partially ordered b y / ^ g if and only if/(;c) ^ g(x) for each x e P (see Figure 1). Indeed, If is a lattice. This ...
متن کاملDistributive lattices with strong endomorphism kernel property as direct sums
Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem 2.8}). We shall determine the structure of special elements (which are introduced after Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...
متن کاملCoalgebraic representations of distributive lattices with operators
We present a framework for extending Stone’s representation theorem for distributive lattices to representation theorems for distributive lattices with operators. We proceed by introducing the definition of algebraic theory of operators over distributive lattices. Each such theory induces a functor on the category of distributive lattices such that its algebras are exactly the distributive latt...
متن کاملA lattice-theoretical perspective on adhesive categories
It is a known fact that the subobjects of an object in an adhesive category form a distributive lattice. Building on this observation, in the paper we show how the representation theorem for finite distributive lattices applies to subobject lattices. In particular, we introduce a notion of irreducible object in an adhesive category, and we prove that any finite object of an adhesive category ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004